Tetranacci and Tetranacci-Lucas Quaternions
نویسندگان
چکیده
منابع مشابه
Lucas-sierpiński and Lucas-riesel Numbers
In this paper, we show that there are infinitely many Sierpiński numbers in the sequence of Lucas numbers. We also show that there are infinitely many Riesel numbers in the sequence of Lucas numbers. Finally, we show that there are infinitely many Lucas numbers that are not a sum of two prime powers.
متن کاملGrand Antiprism and Quaternions
Vertices of the 4-dimensional semi-regular polytope, the grand antiprism and its symmetry group of order 400 are represented in terms of quaternions with unit norm. It follows from the icosian representation of the E8 root system which decomposes into two copies of the root system of H4. The symmetry of the grand antiprism is a maximal subgroup of the Coxeter groupW (H4). It is the groupAut(H2⊕...
متن کاملQuaternions and Dynamics
We give a simple and self contained introduction to quaternions and their practical usage in dynamics. The rigid body dynamics are presented in full details. In the appendix, some more exotic relations are given that allow to write more complex models, for instance, the one of a satellite with inertial wheels and expressed in a non-inertial reference frame. As it is well known, one nice advanta...
متن کاملQuaternions, Interpolation and Animation
The main topics of this technical report are quaternions, their mathematical properties, and how they can be used to rotate objects. We introduce quaternion mathematics and discuss why quaternions are a better choice for implementing rotation than the well-known matrix implementations. We then treat di erent methods for interpolation between series of rotations. During this treatment we give co...
متن کاملQuaternions and Special Relativity
We reformulate Special Relativity by a quaternionic algebra on reals. Using real linear quaternions, we show that previous difficulties, concerning the appropriate transformations on the 3 + 1 space-time, may be overcome. This implies that a complexified quaternionic version of Special Relativity is a choice and not a necessity. a) e-mail: [email protected]
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Asian Research Journal of Mathematics
سال: 2019
ISSN: 2456-477X
DOI: 10.9734/arjom/2019/v15i130137